Automatic Classification of LFM Signals for Radar Emitter Recognition Using Wavelet Decomposition and LVQ Classifier
نویسنده
چکیده
The paper presents a novel approach, based on the wavelet decomposition and the learning vector quantisation algorithm, to automatic classification of signals with linear frequency modulation, generated by radar emitters. The goal of radar transmitter classification is to determine the particular transmitter, from which a signal originated, using only the just received waveform. To categorise a current linear frequency modulation signal to the particular transmitter, the discrete wavelet decomposition of the received signal is accomplished in order to get a representative set of features with good classification properties. The learning vector quantisation algorithm with a previously defined set of features as an input of the learning vector quantisation neural net is proposed as the intelligent classification algorithm, which combines competitive learning with supervision. After the learning process, the learning vector quantisation algorithm is ready to perform the classification process for different data than data used in the learning stage. Simulation results show the high classification accuracy for experimentally chosen wavelets and suggested architecture of the learning vector quantisation classifier.
منابع مشابه
Automatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers
Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...
متن کاملروشی جدید در بازشناسایی خودکار اهداف متحرک زمینی با استفاده از رادارهای مراقبت زمینی پالس داپلر
A new automatic target recognition algorithm to recognize and distinguish three classes of targets: personnel, wheeled vehicles and animals, is proposed using a low-resolution ground surveillance pulse Doppler radar. The Chirplet transformation, a time frequency signal processing technique, is implemented in this paper. The parameterized RADAR signal is then analyzed by the Zernike Moments (ZM)...
متن کاملCombination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States
Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملAutomatic classification of normal and abnormal cardiac sounds by combining features based on wavelet transform and capstral coefficients extracted from PCG signals (Research Article)
Cardiac sounds are produced by the mechanical activities of the heart and provide useful information about the function of the heart valves. Due to the transient and unstable nature of the heart's sound and the limitation of the human hearing system, it is difficult to categorize heart sound signals based on what is heard from a stethoscope. Therefore, providing an automated algorithm for prima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011